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Abstract
Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long
been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in
osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory
complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic
analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that
expression and activation of complement is abnormally high in human osteoarthritic joints. Using
mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the
membrane attack complex (MAC)-mediated arm of complement, is critical to the development of
arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of
complement in wild-type mice confirmed the results obtained with genetically deficient mice.
Expression of inflammatory and degradative molecules was lower in chondrocytes from
destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of
these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix
metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around
chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of
complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis.

The pathogenesis of osteoarthritis is unclear, and there are currently no treatments that
prevent the development of osteoarthritis. Seeking to gain insight into osteoarthritis, we used
mass spectrometry to identify proteins aberrantly expressed in synovial fluid—the fluid that
bathes the synovial joints—of individuals with osteoarthritis. We discovered that proteins of
the complement system are differentially expressed in osteoarthritic compared to healthy
synovial fluids (Supplementary Table 1). Using less-sensitive proteomic techniques, we
previously detected ten of these twelve differentially expressed complement proteins in
osteoarthritic synovial fluids5. The complement system consists of three distinct pathways
that converge at the formation of the C3 and C5 convertases, enzymes that mediate
activation of the C5a anaphylatoxin and formation of MAC (comprising the complement
effectors C5b-9) (Fig. 1a)6. Components of the classical (C1s and C4A) and alternative
(factor B) pathways, the central components C3 and C5, and the C5, C7, and C9 components
of MAC were all aberrantly expressed in synovial fluids from individuals with osteoarthritis
(Fig. 1a and Supplementary Table 1).

Validating our proteomic results, ELISA analysis showed that levels of C3a (Fig. 1b) and
C5b-9 (Fig. 1c) are significantly higher in synovial fluids from individuals with early-stage
osteoarthritis than synovial fluids from healthy individuals. Thus, complement activation
occurs in synovial joints early in the course of osteoarthritis and persists, albeit at a lower
level, during the late phases of osteoarthritis (Fig. 1c). Moreover, immunohistochemical
analysis revealed the presence of MAC in synovium (data not shown) and around
chondrocytes in cartilage (Fig. 1d) from individuals with end-stage osteoarthritis, consistent
with previous findings7–9.

To determine whether the synovium is a source of complement components, we analyzed
the expression of genes encoding complement-related proteins (those identified in synovial
fluid; Supplementary Table 1) in synovial membranes from individuals with osteoarthritis
and from healthy individuals. Analysis by unsupervised hierarchical clustering revealed two
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major clusters: one containing all the expression profiles from individuals with osteoarthritis
(both early- and end-stage), and one containing all the profiles from healthy individuals (Fig.
1e and Supplementary Fig. 1). Interestingly, expression of transcripts encoding the
complement effectors C7, C4A, factor B, C9, and C5 was markedly higher, and expression
of transcripts encoding the complement inhibitors clusterin, factor H, C4-binding protein,
and C1 inhibitor was markedly lower, in osteoarthritic compared to healthy synovial
membranes. Our results suggest that the synovial membrane may take on a pathogenic role
in osteoarthritis by contributing to excessive complement activation.

To investigate the role of complement in the pathogenesis of osteoarthritis, we used a mouse
model of osteoarthritis induced by medial meniscectomy10. In humans, tearing of the
meniscus often requires meniscectomy, which is a risk factor for knee osteoarthritis11.
Because the C5 effector lies at the nexus of the complement cascade (Fig. 1a), we surgically
induced osteoarthritis in C5-deficient (C5−)12 and C5-sufficient (C5+) mice. Sixteen weeks
after surgery, C5− mice exhibited substantially less cartilage loss, osteophyte formation, and
synovitis than did C5+ mice (Fig. 2a,b and Supplementary Fig. 2d). By contrast,
osteoarthritis in this model was not affected by genetic deficiency in C3 (data not shown).
That C3−/− mice were not protected against osteoarthritis can be explained by the
observation that compensatory mechanisms operate in C3−/−

 mice: coagulation factors
compensate for the lack of C3, allowing C5 activation to proceed even in the absence of
C313. Corroborating our findings in the C5− congenic mouse strain, treatment with a
neutralizing monoclonal antibody to C514 attenuated osteoarthritis in wild-type mice (Fig.
2c). We also tested the effect on osteoarthritis of CR2-fH—a fusion protein that inhibits
activation of C3 and C515. Administration of CR2-fH attenuated the development of
osteoarthritis in wild-type mice (Fig. 2d).

We next determined whether the MAC-mediated effector arm of the complement cascade is
important in osteoarthritis. We found that mice deficient in C6, an integral component of the
MAC (see Fig. 1a), were protected against the development of osteoarthritis and synovitis
induced by medial meniscectomy (Fig. 2e,f and Supplementary Fig. 2d). Conversely, mice
deficient in CD59a, an inhibitor of MAC6 (see Fig. 1a), developed more severe osteoarthritis
and synovitis than their wild-type littermates (Fig. 2g,h and Supplementary Fig. 2a,d).

Not only meniscectomy but also meniscal tearing per se can lead to the development of
osteoarthritis in humans11. We therefore also examined the role of complement in the
destabilization of the medial meniscus (DMM) model of osteoarthritis16–18. We found that
deficiency in CD59a accentuated the osteoarthritic phenotype in mice subjected to DMM
(Fig. 2i,j and Supplementary Fig. 2b–d). Deficiency in CD59a also accentuated the milder
osteoarthritis that developed spontaneously in aged mice (Supplementary Fig. 3). These
findings suggest that MAC-mediated complement activity plays a pathogenic role in
osteoarthritis of disparate etiologies.

Resistance to the development of histological osteoarthritis in complement-deficient mice
translated to functional benefit. Twelve weeks after medial meniscectomy, C5− mice
maintained normal gait, whereas C5+ mice developed abnormal gait (Fig. 3a). Time-course
studies revealed that neither C5+ nor C5− mice mice exhibited proteoglycan loss or cartilage
degeneration two and four weeks after medial meniscectomy (Fig. 3b,c). This period of
latency is similar to that observed in the DMM model16 and in humans who have undergone
medial meniscectomy11. Eight and twelve weeks after surgery, however, C5+ mice exhibited
significant proteoglycan and cartilage loss and synovitis, while C5− mice did not (Fig. 3b,c
and Supplementary Fig. 4). The osteoarthritic phenotype was pronounced in these mice,
most likely owing to their genetic background and age at the time of surgery, both factors
that influence the severity of mouse osteoarthritis16.
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Products of dysregulated cartilage remodeling and repair may contribute to joint
inflammation in osteoarthritis19–22. We examined the ability of osteoarthritic cartilage or
specific components of the extracellular matrix (ECM) of cartilage to activate complement
in vitro. Pulverized osteoarthritic cartilage induced the formation of C5b-9, as did the ECM
components fibromodulin and aggrecan but not the ECM components type II collagen and
matrilin-3 (Fig. 4a,b and Supplementary Fig. 5). Fibromodulin, which can bind C1q and
activate the complement cascade23, was present at higher levels in osteoarthritic compared
to healthy synovial fluid (Fig. 4c). Other cartilage ECM components, such as cartilage
oligomeric matrix protein, are also detected at abnormally high levels in osteoarthritic
synovial fluid and can activate complement19,20. Together, these results suggest that release
or exposure cartilage ECM components may contribute to the pathophysiology of
osteoarthritis by activating complement.

Our in situ (Fig. 1d) and in vivo (Fig. 2e–j and Supplementary Figs. 2,3) findings indicate
that MAC is important in mediating complement-related cartilage damage in osteoarthritis.
But how might MAC damage cartilage? Extensive deposition of MAC induces cell lysis and
necrotic cell death, whereas sublytic MAC can activate signaling pathways that drive the
expression of proinflammatory and catabolic molecules24. Because many of the MAC-
encircled chondrocytes in osteoarthritic cartilage appear morphologically intact (Figs. 1d, 4h
and Supplementary Fig. 6), we examined whether MAC induces the expression of
proinflammatory and degradative enzymes in osteoarthritis. We first examined the
expression of genes encoding such molecules in cultured chondrocytes coated with sublytic
levels of MAC. Sublytic MAC increased the chondrocytes’ expression of multiple genes
implicated in osteoarthritis: those encoding cartilage-degrading enzymes17,18,22 (MMPs,
ADAMTSs); inflammatory cytokines25 (CCL2, CSF1, and CCL5); and cyclo-oxygenase 226

(Fig. 4d–f). Sublytic MAC also induced the expression of complement effectors (Fig. 4d);
chondrocyte production of complement may thus synergize with complement derived from
synovial membrane to amplify pathogenic complement signaling in osteoarthritis.

We next examined the effect of complement deficiency on the in vivo expression of these
genes in destabilized mouse joints. Twenty weeks after DMM surgery, chondrocytes from
the destabilized joints of C5-deficient mice, which are MAC deficient and protected against
osteoarthritis (Figs. 2a,b and Fig. 3), expressed lower levels of these inflammatory and
degradative mediators than did chondrocytes from the destabilized joints of C5-sufficient
mice (Fig. 4g). mRNA levels of Jun and Fos, proinflammatory transcription factors whose
expression is induced by MAC27,28, were also lower (Fig. 4g). Moreover, in human
osteoarthritic cartilage, MAC co-localized with MMP-13 and with activated ERK-1/2 (Fig.
4h and Supplementary Fig. 6), a kinase that mediates resistance to MAC-mediated cell
lysis29 and stimulates the expression of MMP-13 by inducing the expression of Fos30.

Here we show that the complement cascade is crucial to the pathogenesis of osteoarthritis.
Cartilage ECM components released by or exposed in osteoarthritic cartilage may trigger the
complement cascade. Additionally, dysregulation of gene expression in joint tissues may
contribute to a local preponderance of complement effectors over inhibitors in osteoarthritis,
permitting complement activation to proceed unchecked. Complement activation in turn
results in the formation of MAC on chondrocytes, which either kills the cells or causes them
to produce matrix-degrading enzymes, inflammatory mediators, and further complement
effectors—all of which promote joint pathology.

Recent findings suggest that low-grade complement activation contributes to the
development of other degenerative diseases, such as age-related macular degeneration31 and
Alzheimer’s disease32. We propose that osteoarthritis can be added to this list of diseases.
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Our findings provide rationale for targeting the complement system as a disease-modifying
therapy for osteoarthritis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Complement components are aberrantly expressed and activated in human osteoarthritic
joints. (a) Schematic of the complement cascade; blue-filled circles denote the complement
effectors and inhibitors identified as aberrantly expressed in osteoarthritic synovial fluid.
(b,c) ELISA quantification of (b) C3a des arg and of (c) the soluble form of MAC
(complement effectors C5b-9) in synovial fluids from healthy individuals (n = 14) and from
individuals with early-stage osteoarthritis (n = 52) or end-stage osteoarthritis (n = 69). **P ≤
0.01 by one-way ANOVA and Dunnett’s post-hoc test. (d) Immunohistochemical staining of
MAC in cartilage from individuals with end-stage osteoarthritis. Isotype-matched antibodies
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were used as negative controls. Staining is representative of that seen in samples from 4
different individuals with osteoarthritis. Scale bar, 100 µm. (e) Cluster analysis of gene-
expression profiles in microarray datasets from synovial membranes from healthy
individuals (downloaded from the NCBI Gene Expression Omnibus) and from individuals
with early-stage or end-stage osteoarthritis (experimentally determined). Analysis was
limited to the set of genes encoding the complement-related proteins differentially expressed
in RA compared to healthy synovial fluid (Supplementary Table 1). The scale bar represents
fold change in gene expression compared to the reference control. Complement effectors are
shown in red text, and complement inhibitors in blue text.
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Figure 2.
The complement cascade, acting through its MAC effector arm, is crucial for the
development of osteoarthritis in three different mouse models. (a,e,g,i) Toluidine-blue-
stained sections of the medial region of mouse stifle joints. (a) Representative cartilage
degeneration in C5+ and C5− mice subjected to medial meniscectomy. (b) Quantification of
cartilage degeneration in (a) (n = 5 mice per group). (c) Quantification of cartilage
degeneration in wild-type mice subjected to medial meniscectomy and then treated i.p. with
750 µg of either the C5-specific monoclonal antibody BB5.1 or an isotype-control antibody
(n = 5 mice per group). (d) Quantification of cartilage degeneration in wild-type mice
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subjected to medial meniscectomy and then treated i.v. with 250 µg of CR2-fH or with PBS
(n = 5 mice per group). (e) Representative cartilage degeneration in C6+ and C6− mice
subjected to medial meniscectomy. (f) Quantification of cartilage degeneration in (e) (n = 13
mice per group). (g) Representative cartilage degeneration in Cd59a+/+ and Cd59a−/− mice
subjected to medial meniscectomy. (h) Quantification of cartilage degeneration in (g) (n =
10 mice per group). (i) Representative cartilage degeneration in Cd59a+/+ and Cd59a−/−

mice subjected to DMM. (j) Quantification of cartilage degeneration in (i) (n = 5 mice per
group). Arrowheads indicate areas of cartilage degeneration. Scale bars: low-magnification
(uppermost) images, 500 µm; higher-magnification (lower) images, 200 µm. Bar-chart data
are the mean + s.e.m. *P < 0.05, **P < 0.01, by t test.

Wang et al. Page 11

Nat Med. Author manuscript; available in PMC 2012 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
C5 deficiency protects against the progressive development of osteoarthritic joint pathology
and gait dysfunction. (a) Gait analysis of C5+ and C5− mice 12 weeks after medial
meniscectomy (n = 5 mice per group). C5− mice used the Ab stride pattern (the sequence of
paw strides being right front—right hind—left front—left hind) with normal frequency,
whereas C5+ mice used this pattern significantly less frequently. *P < 0.05, **P < 0.01 by t
test. Results are representative of two independent experiments. (b) Histological analysis of
articular cartilage at serial time points after medial meniscectomy. Representative toluidine-
blue-stained sections of the medial region of stifle joints are presented; arrowheads show

Wang et al. Page 12

Nat Med. Author manuscript; available in PMC 2012 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



areas of cartilage degeneration. Scale bars: low-magnification (upper) images, 500 µm; high-
magnification (lower) images, 200 µm. (c) Quantification of cartilage degeneration in C5+

and C5− mice subjected to medial meniscectomy (C5+ operated and C5− operated). *P ≤
0.05 by t test comparing C5+ operated and C5− operated. Data are the mean ± s.e.m. (d) Gait
analysis of C5+ operated and C5− operated mice, and of C5+ non-operated and C5− non-
operated mice, at serial time points after medial meniscectomy. *P ≤ 0.05 by t test
comparing C5+ operated mice and C5− operated mice. At week 8, n = 6 for C5+ operated, n
= 6 for C5− operated; at week 12, n = 4 for C5+ operated, n = 4 for C5− operated; at all time
points n ≥ 4 for C5+ non-operated and n = 3 for C5− non-operated.
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Figure 4.
Cartilage ECM components can induce MAC formation, and MAC induces chondrocyte
expression of inflammatory and catabolic molecules. ELISA quantification of C5b-9
(soluble MAC) in (a) 67% human serum incubated with 20 µg ml−1 of pulverized human
osteoarthritic cartilage (OA cart) or synovium (OA syn), or (b) 10% human serum incubated
with 20 µg ml−1 of recombinant cartilage ECM components. Sepharose and zymosan are
positive controls; PBS and EDTA negative controls. **P ≤ 0.01 by one-way ANOVA with
Dunnett’s post-hoc test comparing each cartilage component with PBS. Data are the mean of
triplicate values ± s.d. and representative of three independent experiments. (c) ELISA
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quantification of fibromodulin in synovial fluids from individuals with osteoarthritis (n =
50) and healthy individuals (n = 9). **P ≤ 0.01 by t test. (d–f) qPCR analysis of relative
mRNA expression (d), ELISA analysis of protein expression (e), and immunocytochemical
analysis of COX-2 expression (f) in human chondrocytes incubated with or without MAC
for 72 hours. Scale bar, 50 µm. *P ≤ 0.05; **P ≤ 0.01 by t test. Data are the mean ± s.d. and
representative of three independent experiments. (g) mRNA expression in chondrocytes
from C5+ and C5− mice (n = 4 mice per group) subjected to DMM. Data are the mean +
s.e.m. of triplicates and representative of results from 4 mice from 2 independent
experiments. *P ≤ 0.05; **P ≤ 0.01 by fixed-effect ANOVA taking into account both
destabilized and non-destabilized joints. (h) Immunofluorescent analysis of p-ERK1/2,
MMP-13, and MAC co-localization in human osteoarthritic cartilage. Scale bar, 10 µm.
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